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Abstract. With the help of the basis proposed by Liu and Starace, the solution of the

Schibdinger equation with a strong magnetic field is investigated in this paper. Besides the
analytical characterization, this basis allows an easy way for numerical treatment of the problem.
We present an efficient numerical method for determining both the eigenvalues of the basis
equation and those of the accompanying coupled equations without the computation of the
eigenfunctions. The theoretically stable behaviour of the method is confirmed by numerical
evaluations. For the parameter values which were involved into computations, the results are

obtained with satisfactory accuracy.

1. Introduction

In this paper we deal with the numerical solution of the $dimger equation of a hydrogen-

like ion of nuclear charge and infinite nuclear mass in the homogeneous magnetic field.

With the assumption that the magnetic field is parallel to axithe equation is written
in cylindrical coordinates, o, z. Then, the dependence on the azimuthal aggkround
axis z may be separated in the eigenfunction

W(z, 0, ¢) = (2m) Y2 expingg) ¥ (z, 0).

Thus, the eigenproblem in cylindrical coordinates takes the form of

2 19 3% ng? 2z » 2 .
[W+939+322_Q2+(Q2+z2)1/2_wg+2E]1//=0
O<po<oo —00 <7 <00 1)

whereng is the magnetic quantum number,= e¢|H|/(2mc) and E* = E — wns.
The representation

V(0 =) @2)Pu(z, 0) (2)
n=0
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6748 K Balla and J M Benk”

was proposed by Liu and Starace (1987) assuming that for anyidedz, o) is a bounded
function of variablep and it is thenth eigenfunction belonging to thath) eigenvalugs, (z)
of the problem
2 193 ng? 27
90e*  edo 0%  (e*+zA)V?
The set of eigenfunctions of (3) corresponding to a fixedll be called the Liu—Starace
basis. They form an orthogonal system with respect to the scalar product

— w%0% + M(Z)] d(z,0)=0 O<po<oo. (3

&, m = /o ¢(e)n(e)e de.
The eigenfunctions may be uniformly normalized to 1, i.e. the relations
(ci)n’, (i)n) = Sn’n (4)

become independent af In this case, equations (1) and (3) induce that the system of
functions{ 1, (z)}32, must satisfy the infinite system of ordinary differential equations

&/, = df
—00 < 7 <00 n=01,... (%)
where
A~ 82&)n/ A ac’l\)n’
Ann/ == cha Bnn’ =2 CDna 6
(@) ( 522 ) (2) ( 5z > (6)
and due to orthonormalization (4B,,, = 0 and B,y = —B,,.

By our considerations, the solution of (1) is split into two subsequent steps. In the first
step, the eigenvalues* of (1) are found. The present paper deals with this problem, only.
Namely, the forthcoming material concerns eigenvalues and some functionals composed
of eigenfunctions of (3) while the eigenfunctions of (3) themselves are not of interest at
the moment. We will show that the evaluation of eigenval@ésof (1) in the following
sections requires the computation of neither the eigenfunctigsiis, p) nor those of the
coupled system (5). On the other hand, it is shown that the methods below behave well
numerically. These two features make the method distinguished among those for finding
eigenvalues of Scbdinger equations.

Above the eigenvalueg®, when explaining some phenomena and evaluating physical
observations, the normalized wavefunctiofisor rather their quadratic functionals like
transition probabilities may be requested, too. We consider these evaluations as the second
step in solving (1). Based on the results in this paper, methods that are compatible with
those in the first step are developed for the first time. Since the eigenvalues are of interest
on their own, another publication will be addressed to the second step.

In the next three sections, we will make intensive use of the results concerning singular
boundary value problems and singular eigenvalue problems posed for ordinary differential
equations. For the theoretical background and basic statements as well as for the error
estimates in the case of regular singularity see Balla (1977, 1988), for irregular singularity we
refer to Birger and Lyalikova (1965) and Abramov and Balla (1993). A survey of methods
for singular eigenvalue problems is given in Abranmehal (1980). By a unified approach
based on the above, specific problems (i.e. evaluation of eigenvalues and eigenfunctions and
guadratic functionals involving eigenfunctions) for scalar ordinary &tihger equations
regular and with singularities are highlighted in survey paper Kitoroagal (1987).
Additional material may be found in publications referred in the survey papers. Also, a lot
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of physical problems solved by similar methods is cited or referred to there. No similar
theory has been developed yet for the stable direct evaluation of normalized solutions and
their quadratic functionals of solutions of (1) when basis is chosen in the manner as defined
by (3). Together with the scheme of the second step and the numerical results we describe
the underlying mathematical theory in a future publication.

The outline of the paper is as follows. In section 2 we will describe a method for
finding the eigenvalueg,(z) that appear in equation (3). Section 3 will be devoted to
the evaluation of matrix elements,, (z) and B,/ (z) given by (6). In section 4 we give
a method for the computation of eigenvalugs", k = 0,1, ... for arbitrary values of
parametems. These eigenvalues belong to finit¥-dimensional systems obtained by a
proper truncation of (5), i.e. they approximate the valigsk =0, 1, ... (the dependence
onng is omitted in the notatio&;, E;"). In section 5 we give figures and tables.of, A,y
and B, for some values of parametefsw, ns, n,n’. The results give a possibility both
to evaluate the capacity of the proposed method and to compare them with previous results
obtained either theoretically or numerically. The numerical experiments allow us to think
that equations (3) and (5) and the approximation of the latter are sufficiently well chosen
for the solution of problem (1). These conclusional remarks will be given in section 6.
The paper is completed by an appendix on some technical details concerning the numerical
algorithms and their implementation.

2. The eigenproblem for the Liu—Starace basis

By transformation® (g, z) = \/écﬁ(g, z) equation (3) takes the form of
®"(0,2) +[q(0, 2) + 1(2)]®(0,2) =0 (7
where’ is the abbreviation fof/do,

1 2

First, we consider the cage# 0. For the potentia (o, z) the following representations
are valid:

1,
g0 =5y a* <1
0" 0 z
90 =0") g if->1
i=0
where
ZZ Z ZC‘_l .
qo:%—nsz 611=7 6]2=—?—w2 Qi=Z2i171 if i >3
and
Go=-0"  G1=G2=0  Ga=2Z  Ga=1—n3’
Goiv1 = ZZCiflzZ(i_l) if i > 2.
Hereco = 1,¢1 = —3 ande; = —3[Y) T ciciny + Y)_gcrci—i—1] if i > 2. From now on,

if no confusion arises, we omit argument
The boundedness of any solutidn (with respect top) of equation (3) at the ends of
the interval(0, co) is equivalent to the following statements:
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(i) For any sufficiently smalb (0 <« z),

0®'(0) = y(@)®(0) (9)
where
0 .
y=> vo” (10)
i=0
i—1
1 q1+n qi + Y1 VY .
= 4+ = - i ————— if 22 11
=l M= ey 2(i + |n3)) ’ (1

(see Balla 1977).
(i) For any sufficiently largeo (o > z),

@'(0) = 0B(0)®(0) (12)
where
— Bi
B~ = (13)
i=0 @
fo=-w  P1=0  fo=_ ﬂ-—l[*+i22:ﬂ Bioi1— (i — D, ]
0= 1= 2 = %0 = o qi Z 1+1Pi—1-1 i—2
if i >3 (14)

due to Birger and Lyalikova (1965). Thus, if a small= ¢ is fixed in (9) and a large
0 = 0 Is fixed in (12), then one arrives at an equivalent eigenvalue problem formed of
equation (7) on the finite intervabg, o] and boundary conditions (9) and (12) posed at
the indicated points. This problem is free of singularities.

Now, we define functions(g), ®(p) implicitly by relations

(o) — r(o) . oo
(0) = " sin® (o) @'(0) = v(0)r(0) cos®(o). (15)

In fact, (15) is a modified Rifer transformation where the function(e) is an almost
arbitrary function. We fix only that both limits lign, o v(0) = vo and lim,_,o v(0) = Vo
exist. Modification byv(p) serves for scaling, i.e. for having smooth solutions of the
equations in question. For lower modes the choi¢® = 1 is satisfactory.

Having substituted relations (15) into equation (7), we arrive at the equation for phase
® and amplituder

2\ i ®
O =1%cog O + iz[q(g, 2) + ulsin?® + (UZ) sin 20 (16)
v v 2
b 9@ +u@ , ]sin20  [v*(e)] cos D
r = U(91 Z)r U(Qv Z) - I:I)Z(Q) v (Q)j| 2 UZ(Q) 2 (17)
Conditions (9) taken atp and (12) taken ap, turn to
00v%(00)
®(pp) = arctan———— (18)
¥ (00)
and
O0x) = — arctanw + (n + 1) . (29)
V2(000) 2

As before, in the latter formula denotes the index of the eigenfunction, which, in turn,
coincides with the number of its zeros. Let us denote the solutions of the initial value
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problems (16) with (18) and (16) with (19) b®,(0) and ®(p), respectively. When

is an eigenvalue, then, for an arbitrarily fixed intermediate ppint oc € (00, 00) the
solutions of problems coincide, i.,(0c) = O(0c). Since the solutions of both initial
value problems are monotone with respect to the parameteach eigenvalug, may be
found by a bisection algorithm proceeding from a properly chosen interval that contains the
eigenvalue.

Having the eigenvalues computed, in the next section we will intensively use the
equation for amplitude (¢) defined by (17). It is a linear equation. In fact, we have two
functionsr|(¢) andr(¢) with the coupling condition(oc) = r;(oc) = r¢ that serves as an
initial condition for equation (17) supplied with the corresponding indicesrespectively.

The value ofr. is defined uniquely by the normalization of the eigenfunction in question.
We notice here that solutions of equations (17) are needed neither for the computation of
eigenvalues above in this section nor in the next sections whgreand B,,, and E* are
computed. We will need, however, the valie Namely, instead of computing the norm

of an arbitrary, still not normalized eigenfunction by its numerical integration, we split the
integral into two parts and decompose them following Kitoroagal (1987). We introduce
functionsh (o), k(o) by

o e}
/0@2(5,z)ds=r|2(@,z)h|(g,z> and f 3£, 7) dE = —r(0, 2)hi(0, 2)-

e

(20)
Then, the differentiation of (20) yields equation
1 .
hi(0) = 20 Sir’ ©:(0) + 2vi(@hi(@) i =Lr (21)

if (17) is involved. Obviously, ling_.o7 2k = 0 which involves lim_oh = 0. With the
assumption of

oo
m@) =Y h’o
j=1

one getsi” = h® =0, h'¥ = vo?/[10%(2y0 + 1)] where (10), (11) are taken into account.
On the other handy; (o) remains bounded whesm — oo and the assumption

00 h(j)

hi@) ~ )~

=0 @
with the help of (13), (14) results i@ = v2/[2B80(Bo? + v?)]. Thus, we get
approximations for the valuek(0o), hr(0x)- With these initial values, we form initial
value problems fory, i, to be integrated in the stable directions. Namelyis integrated
from oo andh; is integrated fronp,, to an inner poinp.. Having integrated the equations,
we use the orthonormalization condition (4) and get

re = [l(0e) — he(00)] ™.
We remark again that the normalization is taken into account without the computation of
the eigenfunction to be normalized. What we needed for that was the eigenvalue only. In
the next section we will refer to the values above with an additional lower index indicating
the index of the eigenvalue to which they belong.
Now, let us turn to the case= 0. Then,
1_ n32 ZZ 2 2

Q(Qvo):4Q2 0 —w o .
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To show the similarity of the algorithm, it is worth having the representations of

14 . 4.
1.0 = Y g 40 =0¢*Y Gio™ (22)
i=0 =0
where
40=211—n32 q1 =22 g2=q3=0 g4 = —0* (i =0,i>4)
and
Go=—a® g1=q2=0 gz =27 Ga=1—ng® (i =0, i>4).
Thus, for sufficiently smalb (¢ « 1), relation (9) holds but (10), (11) are replaced by
i 1 1
= i = 3 —|— n = — = —
Y ;VQ Yo =3+ In3] 7 14 sl Y2 2% nal .
ye = — 2y1y2 ,— @ = Yy Vivat o SIS Vi
3+ |n3 4+ |ng| l i + |n3]

For sufficiently largeo (o > 1), the relation (12) remains unchanged with the exception of
some of the coefficients in (14) due §@ = 0, i > 4. Otherwise, everything that was said
in this section holds in the cage= 0, as well. The basic ideas of this section rely upon
the approach summarized in Abramewal (1980).

3. Computation of the matrix elements

In this section we show that the direct computation of integrals in (6) involving the
eigenfunctions and their derivatives may be avoided. Moreover, instead of numerically
unstable processes due to numerical derivation, we propose a method free of instability.
Also, analogously to the normalization process of the previous section, the computation of
the integrands, i.e. the eigenfunctions is not needed.

Let us introduce the notatior®, = d®,/dz and Y, (0, z) = 3°®,(0, z)/3z%. Due to
(7), 2,(0,2) and Y, (o, z) satisfy the equations

a k]
Q,"(0,2) +[9(0 2) + 1p (]2 (0, 2) = —1,(2) (0, 2) — q(fz o, (0.2) (24)
8 3
Tp//(Qv Z) + [Q(Qv Z) + MP(Z)]TP(Qs Z) = —2TP(Z)QP(Q, Z) -2 Q(ai Z)Qp(Q» Z)
87,(2) 8%q(0. 2)
~T 0,00 - 5 0,0.0) (25)

wherert,(z) = dup,(z)/0z.

Let us multiply both sides of equation (24) by, and integrate ovet0, co). With
partial integration and by taking the orthonormalization (4), equation (7) and the behaviour
of the functions at the ends of the interval into account, we arrive at

o0 dq (o, z
5@ == [ 240" d (26)
0 Z
If (24) is multiplied by ®,, with ¢ # p, then, the same process yields

®,(0,2)P,(0, 2)

9q(0, )
3z do. (27)

s 1 >
(0, 2)Py(0, 2)do = —————
/0 p(0,2) P4 (0, 2) do ,qu(Z)_/'Lp(Z)'/(;
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Whenz # 0, with the notationg; (o, z) = 1/(0% + z%)%2, Ix(0, z) = 1/(0% + z%)%?,
1,(2) =/0 @, (0, 2)P,4 (0, 2)li (0, z) do i=12 (28)

Jpq(Z) = /0 Qp(Qv Z)q)q(g’ Z)ll(Qv 2) dQ (29)

expressions (26) and (27) simplify to

o0 27
7,(2) = 2Zz1,,(2) /0 Q,(0,2)®y (0, 2) do = ml,}qm P#q
(30)
while
[e9) 9 ,
7,(00 =0 /(; ®,(0,2)P4(0,2) CI(BQZ 2) do=0 (31)
hold trivially.

Applying the same arguments to equation (25) whe# 0 after some calculations we
get

o0 2Z
/; Tp(0. 2)P4(0.2)do =

mp(2) — g (z)

47
X {1,,1,,(Z) +220p4(2) — 2° |:31§q(z) + p

p— Mq

1,,1,,<z)1;q<z>“ q # p-
(32)

The identity
/0 T, (0, )%, (0, 2) do = — /0 22(0,2) do (33)

is due to orthonormalization.

First, let us consider integralq;q(z), i =12 p,g=01..., z # 0. For their
evaluation we apply an idea similar to that used in (20) and described in Kitortagje
(1987). Let

4 .
/0 ®, (5. 2) Dy (5, (6. 2) U = ryi(0. D)y (0. DKL (0. 2)

o (34)
/ D, (&, )Py (6, DL, 2) d& = —rpr(0, 2)rgr(0, 2Dk, (0, 2)
Q
and forj =1, r get
- . ’ S [; Sin®,(p) Sin®, (o)
kiy (@) = [v)' (@) + v) (@)K}, (@) + . . (35)

vp(0)vg(0)
Approximating the initial values for these singular problems exactly as in section 2, in the
casez # 0 we arrive at

3 i

i Qo VpOVquo 4 1 1 2 1

k' =—-——-40 whereli = =, 2= = 36
13,00y 1

krl (Q ) — 0 ¥poo ¥goo +O<> (37)

pg i 2,30[(:302 + Vpoo4) (,802 + quo4)]1/2 Oco

12 2 _

k;zq (Qoo) = 0Vpoc gooQco + O(ro) and 16 =1 i=12

2:30[(/302 + 1)poo4) (,302 + quo4)]1/2
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One easily verifies thatlfq(O) does not appear in the evaluation. In the computation of
1, (0), the only change is thatl (o0) = 1/[2y0*(vo — 1] + O(0).
Finally,
ky, (0c) — kIt (0c)
I'pctge
for the relevant values of andi.

Jyq(z) and the expression on the right-hand side of (33) remain to be computed. For
this purpose, we use the assumption that the expansion

I;,qz = (38)

Q(0.2) =Y kp@Pi0,2)  With ki (2) = / Q,(0, 2)®; (0, 7) do (39)
=0 0
holds and, together with it
Tog@) = Y kp(I4 () (40)
t=0,t#p
is valid (x,,(z) = 0 by orthonormalization). It immediately yields that
27
kpi(z) = 711; whenp # ¢ (41)
Mp — Mt

| fende=3we [ 2eaveod
t=0

= e
=4z P S 42
) t=;t;ép |:/’LP(Z) - /’Lt(Z)j| (42)

Jog(2) =27z )

' (43)
1=orep Mo (@) = pa(2)

Before giving the final formulae for the matrix elements, notice mjgt: Iq"p. Now, the
above considerations yield

Bu@ =0  Bu(2) = ﬁzﬁ,ﬂ(z) whenn 1’ (44)
Au(@) = —4zzz2éﬂ [M(ZI;_%T (45)
A (2) = /J«n%fﬂn(z) {Inln/ () = 12[3I,§n,(z)
Do -
vz 2 s S @

4. The coupled system

As it was said in section 1, instead of equation (5), we deal with a truncated one. Namely,

for fixed N, N =1, 2, ..., we investigate the eigenvalue problem
d?FV dFV
F+B(Z)TZ+[A(Z)—M(Z)]FN=—2E*NFN —00 <z <00 (47)
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where the vectorfunctiorF¥ is assumed to be bounded. The vecof(z) is formed
as F¥(z) = [f¥ @), ¥ @), ..., fi_1@]" where £V stands forf; in the Nth truncated
system, T denotes the transpose of the vector, later that of a matrix. The entries of
the skew-symmetrical matri8(z) are B, (z), n,n’ = 0,..., N — 1, while the entries
of A(z) are A,y (z), n,n’ = 0,...,N — 1. The matrix M(z) is diagonal, M(z) =
diag[uo(2), . . ., un-1(2)]-

Due to (1) and (2), the eigenvectaFs’ are either odd or even. Thus, whegn# 0 we
may restrict the problem to the interval, &) with imposing either the boundary condition
FV(0) = 0 for the odd solution oF"’(0) = 0 for the even solution. (Within this section,
’ denotes derivation with respect to) Whenns = 0, the matrix. A has a singularity at
z = 0, while the solution in question is required to be regular. This case must be handled
separately. The interval may be reduced again butzgpop) with a smallzg > 0 and
again, the proper boundary conditionzgtmust be imposed. The singularity of the system
at z = 0, however, is a weak one, i.e. in contrast to cases studied in section 2, any linear
condition atz = 0 remains admissible. Among them, those which produce odd and even
solutions are admitted. At a poigg sufficiently close taz = 0, they may be approximated
by FN(z0) =0 or by F¥'(z9) = 0.

Now, we turn to reducing the problem to a finite interval. When oo, A(z) andB(z)
tend to O as a negative power gfwhile M(z) = My +0(1/z). The true eigenvalues;,
k=0,1,2,...are known to be less than lim,, u,(z)/2,n = 0, 1, ... in hon-autoionizing
states. Due to monotonicity of, (z) with respect ton for a fixed z and with respect to
z for fixed n, one hask} < lim,_, . no(z)/2 for all k. We assume that the same holds
for the eigenvalue€;" of the truncated system, i.e. the diagonal matyite, — 2E*Iy is
positive definite. (Herd is the identity matrix, the lower index refers to its order.) Then,
the boundedness of a solutidi¥ (z) whenz — oo involves thatF¥'(z) = a(z)F¥(z)
for sufficiently largez where lim_, o a?(z) = My — 2E*I, as = lim._ o a(z) should be
chosen negative definite (see Birger and Lyalikova 1965). For the approximation of this,
we may use the boundary condition

FY (200) = Qoo F (200) (48)

provided thatz., is chosen to be sufficiently large. A more accurate boundary condition
FN'(z0) = 600 F" (z00) May be obtained if a more accurate approximatignis computed
using

o +a®+Ba+ A—-M+2E*Iy =0 (49)

that defines functiome. Exactly as in section 2, the more coefficients of the power series
expansion of4, B and M with respect to the non-positive powers pfare involved, the
more coefficients in the power series expansiow @f) may be computed.

Next, let us rewrite the odd and even problems in the form of

G'+P(, ENG=0 71 <2 < 200 (50)
UiTG(z1) =0 (51)
UL G(ze) =0 (52)

respectively, where

[ FN o Oy —Iy
G_<FN/> 73(Z’E)_<A—/\/1+2E*1N B ) (53)
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71 = zo Whenng = 0, otherwisez; = 0, the Nth order zero matrix is denoted by, Gand
i = e, 0. The index e belongs to even solution(s), the index o refers to the odd one(s) and

le _ Oy lo _ Iy ro_ _“;ro
U1_<IN) ul_(0N> Uoo—<1N . (54)

It is reasonable to normalize the right boundary condition too, and@lis= (— (e[ as +
IN)il/ZaooKal—oaoo + IN)il/Z)-

The classical theory of adjoint systems claims that if a vector fundfign, E) is a
solution of equation (50), thetV"(z, E)G(z, E) = 0 whereU(z, E) = V(z, E)W(z, E),
V(z, E) is a solution of problemV’ — PT(z, E)V = 0, while W(z, E) is arbitrary non-
singular. In 1961, Abramov introduced a special choicétoproviding the bestU in the
sense that the norm &f remained constant on the whole interval. There was no need either
to compute the possibly unstabte or to find the propeWw separately; the equation féf
was derived directly.

The numerical problems of the type (50)—(52) are considered in a general setting in
Abramov et al (1980). A consequence of (50)—(52) is that a vector functiap, E) is a
solution if, for anyz € [z1, zoo], it Satisfies the linear algebraic system

U'T(2)G(z, E)=0  UT@)G(E E)=0 (55)
where (2V x N) matrix functionsU?(z), p =i, i = 0, e or p = r are the solutions of the
initial value problems

UP — [y — UPUPTUP) turNPTur =0 (56)
with initial values

U (z0) = Uy U'(zo) = UL, (57)
respectively. In turnG(z, E) is a non-trivial solution, i.eE is an eigenvalue if

det< ’é‘;éj;) —o. (58)

Whenz = z¢ is fixed, then, the latter relationship is a non-linear algebraic equation with
respect to the required eigenvalue. In order to fiijd’ numerically, one has to solve a
pair of problems (56), (57) for each gueBs The stability of the computations is ensured
by the method of transfer (56) of the boundary condition, namely that

UPT(z)U”(z) = constant (59)

holds. Due to normalization, the constant matrix on the right-hand side of (59) is
each case.

When N = 1, the problem is a scalar, self-adjoint eigenvalue problem and one easily
gets a rough estimate from below:

1o(0)/2 < E§' (60)

and, obviously,E3' < Ej' < E3* < .... In this case, equation (47) may undergo the
Prufer transformation and the sequence of eigenvalues may also be computed by the method
described in section 2. Notice that the boundedness condition furnishing us with (48)
provides an upper bound lim u(z)/2 for all E;N. The method of section 2 reflects

the number of zeros of the eigenfunctions when evaluating the eigenvalues, therefore the
sequenceE! < Eft < E3' < ... with known lower and upper bounds may be computed
without gaps.
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5. Appraisal of numerical results

To obtain the energy eigenvaluéy, the algorithm described in the previous sections was
implemented by a FORTRAN program working on a SUN Sparc server 20. Some technical
details about this program can be found in the appendix.

The numerical solution of (7) provided functiopsz) at arbitrarily fixed values of the
parametersy, z and quantum numbers andnz. Some of them are shown in figure 1. All
functions start at = 0 from finite values and grow monotonically {g°=lim,_, o @, (z).

This behaviour follows from formula (26) where the right-hand side is, obviously, non-
negative. Whems = 0 the functionsu,, (z) begin as a linear function ¢f | while fornz > 1

they behave as z2. Beyond this qualitative picture, the figure compares (in below panels)

a few asymptotic analytical results (see Barcza 1996) to our results. The coincidence of the
two types of treatments is demonstrated in both asymptotic ranges. Looking for polynomial
radial eigenfunctions in a two-dimensional Satlinger equation, Taut (1995) arrived at a
problem that coincides with (7) at= 0 and obtained valueg, (0) analitically for certain

pairs ofw andn. In these specific cases the results confirm each other. The eigemvalue
as a function ofw at different and fixed values aof, 0 < z < 1, z 3> 1 can be found in
Barcza (1996). Our evaluations confirmed the behaviour stated there, and therefore we do
not repeat these figures here.

Obviously, the evaluation of the coupling matrix elements plays an important role in
the solution of (47). For some parameter sets, the functigngz) and B, (z) are shown
in figure 2. The matrix elements,,, atnz = 0 andn # »n’ have logarithmic singularity at
z = 0. This feature is a consequence of the choice of the basis; no singularity arises in any
other combination of parameter values. Another remarkable property of the matrix elements
A (2), the monotonicity on the whole—interval (0, co) seems to hold, independently of
the other parameters. The monotonicity appearsBigr(z) as well. Whenns = 1, the
monotonicity disappears. With increasihg— rn’| the off-diagonal elements of,,,/, B,
vanish more and more rapidly wheris increasing. Together with the fast decreasd gf,

B, for small and intermediate values of this phenomenon demonstrates that the system
of equations (47) is coupled mostly by elements close to diagonal. This is a good omen
for the numerical solutions. We may expect a high accuracg,irusing a few channels,

only. Figure 3 shows the coupling matrix elements for same’ and atnz = 0, 1 near the
asymptotic ranges. Panels of the figures display the validity of the asymptotic expressions
by Barcza (1996) and the series expansion (39).

Some of the results are selected and demonstrated in tables 1 and 2, illustrating the
relevance of the basis and efficiency of the applied numerical method. We did not face
any difficulties in computations when increasing the magnetic numberWe also got
values not having been provided anywhere else, even in Ratddr(1994). While Ruder
et al (1994) gives the results up to 6-8 digits at a very high number of channels (12, in
general), the coincidence in the first 3-5 digits (4—6 digitEif) appears even when we
use a very limited number of channels, 1, 2 or 3 and a very low accuracy at each step of the
computation. (We stopped the iteration at the final step when the relative accuracy achieved
1078)) Thus, we verified this expectation of Liu and Starace (1987) for the first time both
for low and higher values ofi; and for non-adiabatic approximation and by a different
numerical method. When the number of chann¥lsncreases and the accuracy is kept
as before, our valueg(’ seem to change in the next digits only, and the agreement with
results by Rudeet al (1994) is not getting worse. Since the bases are chosen differently
and therefore no common intermediate values exist for comparison. No exact final values
are available either, thus no general statement can be formulated in favour of any of the
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Figure 1. Eigenvaluesu, of the basis equation (7) as a function pffor = 1071, 1, 10,
n = 0,1,2,3. Full curves:n = 0, chain curves:n = 1, dotted curves:n = 2 and long-
dash curvesn = 3. The short-dash—long-dash curves in the panels below are for showing the

asymptotic behaviour of the computed eige

nvalues in comparison with the asymptotic expansions

in Barcza (1996). The right-hand side scale belongsate= 1. u° = 2w(2n + n3 + 1).



Ann‘ B nn’ 0

Figure 2. Coupling matrix elementd,,/, B,y as a function ot for n3 = 0, 1. The line types
indicate the first indices as in the figure 1. The assignments of labels &esgs The middle
panels are scaled logarithmically in

compared final values. As far as we know, no computations have been carried out yet with
the Liu—Starace basis using more than one channel, while we are able to do that. For the
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Figure 3. Asymptotic behaviour of the coupling matrix elements, , B,,  versusz. The
labels refer to triplgn, n’, n3). The line types are the same as in figurevls= 1. The left and
right axes belong to the parametey = 0, 1, respectively.

historical review of other approaches, their advantages and backdraws, we refer the reader
to the latest survey by Rudet al (1994).
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Table 1. Energy eigenvalueE,’(" (in atomic units} of the lowest staté& = 0 of the H atom in
a magnetic field with strength parametewhenz = +1. The numbers in the brackets denote
the numberN of channels. The index R refers to the values taken from Retet (1994).

The uncertainty in the last digits are indicated by

—n3 E(I)YR Eév
1 0.7 0.178993 (13) 0.17857 (3)
0.17869 (5)
1 0.400387 (15) 0.40059 (2)
0.40055 (5)
0.400587 (7)
10 8.5344/5 (12) 8.5329 (1)
8.53440 (3)
15 13.2945/6 (12) 13.2930 (1)
13.2944 (2)
100 96.65283/8 (12) 96.65278 (1)
2 1 0.528828 (19) 0.52867 (1)
0.52876 (3)
10 8.806 36/7 (12) 8.80617 (1)
8.806 30 (2)
100 97.197/8 (12) 97.19785 (1)
3 1 0.596 759 (21) 0.596 50 (1)
0.59671 (2)
10 8.959320/1 (12) 8.95963 (1)
8.95930 (2)
100 97.516 28/9 (12) 97.5164 (1)
4 1 0.640649 (12) 0.64051 (1)
0.64063 (2)
10 9.061413 (12) 9.06139 (1)
9.06144 (2)
100 97.73363 (12) 97.7338 (1)
5 1 — 0.67202 (1)
0.67210 (2)
10 — 9.13612 (1)
9.136 20 (2)
100 — 97.8958 (1)

aWe recall thatw = 1 if |H| = 4.7 x 10° T.

It is worth putting an accent again on the gain in the computational efficiency. It
is achieved first because we do not evaluate the eigenfunctions of (3), instead of that, we
directly obtain the coefficients of (5), i.e. the functiqn&), A, (z) andB,,(z). Neither are
the vector-functiong" (z) belonging to the iteration steps computed when the eigenvalues
EY are defined by iteration as described in the previous sections. Secondly, all intermediate
evaluations in the definition of the eigenvalugf consist of the solution of initial value
problems which are stable and have smooth solutions. This allows us to use both simple
methods for the numerical integration of these equations and large integration steps.

6. Conclusions

The numerical investigations of the Liu—Starace basis were presented in this work. We
determined the eigenvalugs,(z) of the basis equation (7) on the whajenterval [0, co)
without computing eigenfunctions by solving a first order differential equation only. This is
a profound simplification compared to the generally accepted view when treating equations
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Table 2. Energy eigenvaluesE]ﬁV (in atomic units) of the lowest state = 0 of H atom in

magnetic field with strength parameterwhenn = —1. Designations are the same as in
table 1.

—n3 E(])\,]R E(/)V

1 1 075475 (12) 0.754759 (1)

10  9.623880 (12)  9.62380 (1)
100 99.538178 (12) 99.5388 (1)
2 1 0782545 (12)  0.7825457 (1)
10  9.647807 (12)  9.64781 (1)
100  99.549420 (11)  99.5495 (1)
3 1 0.800862(12) 0.80186 (1)
10  9.665419 (12)  9.66542 (1)
100 99.558673 (9)  99.5589 (1)

4 1 — 0.81445 (1)
10 — 9.67939 (1)
100 — 99.5669 (1)

similar to (7). The usual procedure is to solve a second order differential equation which
leads simultaneously to the eigenvalue and eigenfunction. In this manner we saved much
computing time. We showed that the numerical treatment is in keeping with the asymptotic
one in both relevant domains. We reduced the computation of coupling matrix elements
A, (2), B, (z) to determining the values of some quadratic functionals. Each functional
was computed in an efficient and stable way by solving ordinary differential equations. The
results of the numerical computations and the asymptotic expansions fit well where the latter
is valid. It is not true only in the case oA, (z) if n3 = 0,n # n’ andz — 0. Here

the series expansion (39) converges slowly. Lastly, we completed our report by showing
a method for obtaining the eigenvalues of coupling equations (47) analogous to that used
for the basis equation (7). Both methods are based upon the same factorization where
the functions satisfy relationg U’ = 0, UTU = I at each point. It corresponds to a
continuous orthogonalization. We note that, based on the theoretical results in Konyukhova
and Pak (1987), the above method may also be modified for being suitable for computations
at large values ofo. The problem is, however, beyond the scope of this paper.

The Liu—Starace basis that was chosen naturally allows us to compute the energy levels
of a hydrogen-like ion in a strong magnetic field more efficiently than it was done by bases
of other types. Accordingly, we can evaluate higher excited states than were available
before. Moreover, we might get a chance to map some resonances in the continuum.

Our main purpose with the present work was the exact mathematical establishment of
the numerical solution of the problem as it was posed in the introduction. We remark that,
for small w, the oblate spheroidal system of coordinates with a similar expansion of the
eigenfunction is more relevant (see Barcza 1994), while for larger values this setting
fits well. For evaluating the energy levels of hydrogen atom in strong magnetic fields,
we gave an almost complete set of mathematical tools and with its help, we carried out a
number of computations.
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Appendix

To solve equations (56) a hierarchically organized FORTRAN program was developed.
At the lowest level of the program, the fourth order Runge—Kutta (R—K) algorithm with
an adaptive stepsize control due to Pressal (1992) is plugged in. It integrates (16)
twice in each step with initial conditions (18) and (19), respectively. The vajuwas
chosen equal tg x 107*. For approximation ofy (o), a truncated sum of (10) was
taken. Due to the fast convergence the accuracy became suitable when the consequent
sums differed less than by 1 The valuep,, cannot be fixed similarly since (13) is an
asymptotic expression only. A numerical procedure was used for simultaneous choise of
0 and truncation. For both cases, exact error estimates are available, see Abramov and
Balla (1993) and Balla (1977). The intermediate pajgtwas set equal ta except in
the casez = 0 whereg, = 1 was taken. The routine on the next level determipgd
by a simple bisection method as indicated in section 2. It was stopped when either the
relative accuracy reached that of the machine ong,ine. |(n!=2 — =)/ < 1071
or the relative error|[®;(oc) — Or(0c)]/Oi(0c)| became less than 1. The upper
indices in the previous formula denote the number of iterations. The coupling matrix
elements were computed as has been described in section 3 by simultaneous integration of
equations (16), (21) and (35). Again, the above R-K algorithm was used for numerical
integration.

When computingE} for a fixed k and N, both the value of the determinant and
the relative deviation of£}’ in the consequent iterations were checked. For evaluation
of the components building up the determinant we integrated equation (56). The basic
integration routine was as above. To approximate the identity (59), we checked its defect
at M equidistant pointg; = zo + (oo — 20)i/M where M = 8 was chosen. Aiming at a
global errore, on each subintervak], z;.1] the local errorg,c = ¢/M was allowed and
inequality

Y WU -DZ; < e (A1)

ij

was controlled. On the subintervals the starting stepsize was chosen te bg,1—2z;)/ Mo.

My = 8 was set on the first subinterval. If the condition did not hold, then the algorithm

returned to the left end of the subinterval amt) was doubled. Otherwise, either the

stepsize was kept for the next subinterval or it was doubled, provided it had been accepted

at least once before. This stepper method allowed us to compute all necessary quantities

(n, Anw, Buw) at a fixedz no more than once and to store them in a linked list structure.
During the integration of coupled equations (56), the inverse of the matticés

was needed at each Since these matrices are symmetrical and close to the identity

matrix, the most efficient method, that is, the Cholesky decomposition (see e.g.ePress

al 1992) was used. For finding the determinant in (58), an LU decomposition was used.

As we said before the relative accuracy of the eigenvalue was one of the checkpoints.

it (ESY — EPY/EP| < 1079, the process was stopped atif’ was accepted as

a starting value for the computation at a larger numiverof channels or for a more

excited level in the spectrum. It is remarkable that these two types of iterations are

practically independent, so the processes could have been parallelized. Ad/kerD,

we always choosey = 0, otherwisezo = 10°3. The largest right end was,, = 10

while the intermediate poind; was always close ta; and depended on the length of the

z-interval.
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