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The diamagnetic Coulomb problem at high field strength.
Numerical analysis
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Abstract. With the help of the basis proposed by Liu and Starace, the solution of the
Schr̈odinger equation with a strong magnetic field is investigated in this paper. Besides the
analytical characterization, this basis allows an easy way for numerical treatment of the problem.
We present an efficient numerical method for determining both the eigenvalues of the basis
equation and those of the accompanying coupled equations without the computation of the
eigenfunctions. The theoretically stable behaviour of the method is confirmed by numerical
evaluations. For the parameter values which were involved into computations, the results are
obtained with satisfactory accuracy.

1. Introduction

In this paper we deal with the numerical solution of the Schrödinger equation of a hydrogen-
like ion of nuclear chargeZ and infinite nuclear mass in the homogeneous magnetic field.

With the assumption that the magnetic field is parallel to axisz, the equation is written
in cylindrical coordinatesϕ, %, z. Then, the dependence on the azimuthal angleϕ around
axis z may be separated in the eigenfunction9:

9(z, %, ϕ) = (2π)−1/2 exp(in3ϕ)ψ(z, %).

Thus, the eigenproblem in cylindrical coordinates takes the form of[
∂2

∂%2
+ 1

%

∂

∂%
+ ∂2

∂z2
− n3

2

%2
+ 2Z

(%2 + z2)1/2
− ω2%2 + 2E∗

]
ψ = 0

0< % < ∞ − ∞ < z < ∞ (1)

wheren3 is the magnetic quantum number,ω = e|H|/(2mc) andE∗ = E − ωn3.
The representation

ψ(z, %) =
∞∑
n=0

fn(z)8̂n(z, %) (2)
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was proposed by Liu and Starace (1987) assuming that for any fixedz 8̂n(z, %) is a bounded
function of variable% and it is thenth eigenfunction belonging to the (nth) eigenvalueµn(z)
of the problem[
∂2

∂%2
+ 1

%

∂

∂%
− n3

2

%2
+ 2Z

(%2 + z2)1/2
− ω2%2 + µ(z)

]
8̂(z, %) = 0 0< % < ∞. (3)

The set of eigenfunctions of (3) corresponding to a fixedz will be called the Liu–Starace
basis. They form an orthogonal system with respect to the scalar product

(ζ, η) =
∫ ∞

0
ζ(%)η(%)% d%.

The eigenfunctions may be uniformly normalized to 1, i.e. the relations

(8̂n′ , 8̂n) = δn′n (4)

become independent ofz. In this case, equations (1) and (3) induce that the system of
functions{fn(z)}∞n=0 must satisfy the infinite system of ordinary differential equations

d2fn

dz2
+ [2E∗ − µn(z)]fn +

∞∑
n′=0

[
Ann′fn′ + Bnn′

dfn′

dz

]
= 0

−∞ < z < ∞ n = 0, 1, . . . (5)

where

Ann′(z) =
(
8̂n,

∂28̂n′

∂z2

)
Bnn′(z) = 2

(
8̂n,

∂8̂n′

∂z

)
(6)

and due to orthonormalization (4),Bnn = 0 andBnn′ = −Bn′n.
By our considerations, the solution of (1) is split into two subsequent steps. In the first

step, the eigenvaluesE∗ of (1) are found. The present paper deals with this problem, only.
Namely, the forthcoming material concerns eigenvalues and some functionals composed
of eigenfunctions of (3) while the eigenfunctions of (3) themselves are not of interest at
the moment. We will show that the evaluation of eigenvaluesE∗ of (1) in the following
sections requires the computation of neither the eigenfunctions8̂n(z, ρ) nor those of the
coupled system (5). On the other hand, it is shown that the methods below behave well
numerically. These two features make the method distinguished among those for finding
eigenvalues of Schrödinger equations.

Above the eigenvaluesE∗, when explaining some phenomena and evaluating physical
observations, the normalized wavefunctionsψ or rather their quadratic functionals like
transition probabilities may be requested, too. We consider these evaluations as the second
step in solving (1). Based on the results in this paper, methods that are compatible with
those in the first step are developed for the first time. Since the eigenvalues are of interest
on their own, another publication will be addressed to the second step.

In the next three sections, we will make intensive use of the results concerning singular
boundary value problems and singular eigenvalue problems posed for ordinary differential
equations. For the theoretical background and basic statements as well as for the error
estimates in the case of regular singularity see Balla (1977, 1988), for irregular singularity we
refer to Birger and Lyalikova (1965) and Abramov and Balla (1993). A survey of methods
for singular eigenvalue problems is given in Abramovet al (1980). By a unified approach
based on the above, specific problems (i.e. evaluation of eigenvalues and eigenfunctions and
quadratic functionals involving eigenfunctions) for scalar ordinary Schrödinger equations
regular and with singularities are highlighted in survey paper Kitoroageet al (1987).
Additional material may be found in publications referred in the survey papers. Also, a lot
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of physical problems solved by similar methods is cited or referred to there. No similar
theory has been developed yet for the stable direct evaluation of normalized solutions and
their quadratic functionals of solutions of (1) when basis is chosen in the manner as defined
by (3). Together with the scheme of the second step and the numerical results we describe
the underlying mathematical theory in a future publication.

The outline of the paper is as follows. In section 2 we will describe a method for
finding the eigenvaluesµn(z) that appear in equation (3). Section 3 will be devoted to
the evaluation of matrix elementsAnn′(z) andBnn′(z) given by (6). In section 4 we give
a method for the computation of eigenvaluesE∗N

k , k = 0, 1, . . . for arbitrary values of
parametern3. These eigenvalues belong to finite,N -dimensional systems obtained by a
proper truncation of (5), i.e. they approximate the valuesE∗

k , k = 0, 1, . . . (the dependence
onn3 is omitted in the notationE∗

k , E
∗N
k ). In section 5 we give figures and tables ofµn, Ann′

andBnn′ for some values of parametersz, ω, n3, n, n
′. The results give a possibility both

to evaluate the capacity of the proposed method and to compare them with previous results
obtained either theoretically or numerically. The numerical experiments allow us to think
that equations (3) and (5) and the approximation of the latter are sufficiently well chosen
for the solution of problem (1). These conclusional remarks will be given in section 6.
The paper is completed by an appendix on some technical details concerning the numerical
algorithms and their implementation.

2. The eigenproblem for the Liu–Starace basis

By transformation8(%, z) = √
%8̂(%, z) equation (3) takes the form of

8′′(%, z)+ [q(%, z)+ µ(z)]8(%, z) = 0 (7)

where′ is the abbreviation for∂/∂%,

q(%, z) =
1
4 − n3

2

%2
+ 2Z

(%2 + z2)1/2
− ω2%2. (8)

First, we consider the casez 6= 0. For the potentialq(%, z) the following representations
are valid:

q(%, z) = 1

%2

∞∑
i=0

qi%
2i if

%

z
< 1

q(%, z) = %2
∞∑
i=0

q̃i%
−i if

%

z
> 1

where

q0 = 1
4 − n3

2 q1 = 2Z

z
q2 = −Z

z3
− ω2 qi = Zci−1

z2i−1
if i > 3

and

q̃0 = −ω2 q̃1 = q̃2 = 0 q̃3 = 2Z q̃4 = 1
4 − n3

2

q̃2i+1 = 2Zci−1z
2(i−1) if i > 2.

Herec0 = 1, c1 = − 1
2 andci = − 1

2[
∑i−1

l=1 clci−l +
∑i−1

l=0 clci−l−1] if i > 2. From now on,
if no confusion arises, we omit argumentz.

The boundedness of any solution8 (with respect to%) of equation (3) at the ends of
the interval(0,∞) is equivalent to the following statements:
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(i) For any sufficiently small% (% � z),

%8′(%) = γ (%)8(%) (9)

where

γ =
∞∑
i=0

γi%
2i (10)

γ0 = 1
2 + |n3| γ1 = − q1 + µ

2(1 + |n3|) γi = −qi +
∑i−1

l=1 γlγi−l
2(i + |n3|) if i > 2 (11)

(see Balla 1977).
(ii) For any sufficiently large% (% � z),

8′(%) = %β(%)8(%) (12)

where

β ∼
∞∑
i=0

βi

%i
(13)

β0 = −ω β1 = 0 β2 = µ

2ω
βi = 1

2ω

[
q̃i +

i−2∑
l=0

βl+1βi−l−1 − (i − 2)βi−2

]
if i > 3 (14)

due to Birger and Lyalikova (1965). Thus, if a small% = %0 is fixed in (9) and a large
% = %∞ is fixed in (12), then one arrives at an equivalent eigenvalue problem formed of
equation (7) on the finite interval [%0, %∞] and boundary conditions (9) and (12) posed at
the indicated points. This problem is free of singularities.

Now, we define functionsr(%),2(%) implicitly by relations

8(%) = r(%)

ν(%)
sin2(%) 8′(%) = ν(%)r(%) cos2(%). (15)

In fact, (15) is a modified Prüfer transformation where the functionν(%) is an almost
arbitrary function. We fix only that both limits lim%→0 ν(%) = ν0 and lim%→∞ ν(%) = ν∞
exist. Modification byν(%) serves for scaling, i.e. for having smooth solutions of the
equations in question. For lower modes the choiceν(%) ≡ 1 is satisfactory.

Having substituted relations (15) into equation (7), we arrive at the equation for phase
2 and amplituder

2′ = ν2 cos22+ 1

ν2
[q(%, z)+ µ] sin22+ (ν2)′

ν2

sin 22

2
(16)

r ′ = −v(%, z)r v(%, z) =
[
q(%, z)+ µ(z)

ν2(%)
− ν2(%)

]
sin 22

2
+ [ν2(%)]′

ν2(%)

cos 22

2
. (17)

Conditions (9) taken at%0 and (12) taken at%∞ turn to

2(%0) = arctan
%0ν

2(%0)

γ (%0)
(18)

and

2(%∞) = − arctan
%∞β(%∞)
ν2(%∞)

+
(
n+ 1

2

)
π. (19)

As before, in the latter formulan denotes the index of the eigenfunction, which, in turn,
coincides with the number of its zeros. Let us denote the solutions of the initial value
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problems (16) with (18) and (16) with (19) by2l(%) and2r(%), respectively. Whenµ
is an eigenvalue, then, for an arbitrarily fixed intermediate point% = %c ∈ (%0, %∞) the
solutions of problems coincide, i.e.2l(%c) = 2r(%c). Since the solutions of both initial
value problems are monotone with respect to the parameterµ, each eigenvalueµn may be
found by a bisection algorithm proceeding from a properly chosen interval that contains the
eigenvalue.

Having the eigenvalues computed, in the next section we will intensively use the
equation for amplituder(%) defined by (17). It is a linear equation. In fact, we have two
functionsrl(%) andrr(%) with the coupling conditionrl(%c) = rr(%c) = rc that serves as an
initial condition for equation (17) supplied with the corresponding indices l, r, respectively.
The value ofrc is defined uniquely by the normalization of the eigenfunction in question.
We notice here that solutions of equations (17) are needed neither for the computation of
eigenvalues above in this section nor in the next sections whereAnn′ andBnn′ andE∗ are
computed. We will need, however, the valuerc. Namely, instead of computing the norm
of an arbitrary, still not normalized eigenfunction by its numerical integration, we split the
integral into two parts and decompose them following Kitoroageet al (1987). We introduce
functionshl(%), hr(%) by∫ %

0
82(ξ, z)dξ = rl

2(%, z)hl(%, z) and
∫ ∞

%

82(ξ, z)dξ = −rr2(%, z)hr(%, z).

(20)

Then, the differentiation of (20) yields equation

h′
i (%) = 1

ν2(%)
sin22i(%)+ 2vi(%)hi(%) i = l, r (21)

if (17) is involved. Obviously, lim%→0 rl
2hl = 0 which involves lim%→0 hl = 0. With the

assumption of

hl(%) =
∞∑
j=1

h
(j)

l %j

one getsh(1)l = h
(2)
l = 0, h(3)l = ν0

2/[γ0
2(2γ0 + 1)] where (10), (11) are taken into account.

On the other hand,hr(%) remains bounded when% → ∞ and the assumption

hr(%) ∼
∞∑
j=0

h
(j)
r

%j

with the help of (13), (14) results inh(0)r = ν∞2/[2β0(β0
2 + ν∞4)]. Thus, we get

approximations for the valueshl(%0), hr(%∞). With these initial values, we form initial
value problems forhl, hr to be integrated in the stable directions. Namely,hl is integrated
from %0 andhr is integrated from%∞ to an inner point%c. Having integrated the equations,
we use the orthonormalization condition (4) and get

rc = [hl(%c)− hr(%c)]
1/2.

We remark again that the normalization is taken into account without the computation of
the eigenfunction to be normalized. What we needed for that was the eigenvalue only. In
the next section we will refer to the values above with an additional lower index indicating
the index of the eigenvalue to which they belong.

Now, let us turn to the casez = 0. Then,

q(%, 0) =
1
4 − n3

2

%2
+ 2Z

%
− ω2%2.
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To show the similarity of the algorithm, it is worth having the representations of

q(%, 0) = 1

%2

4∑
i=0

qi%
i q(%, 0) = %2

4∑
i=0

q̃i%
−i (22)

where

q0 = 1
4 − n3

2 q1 = 2Z q2 = q3 = 0 q4 = −ω2 (qi = 0, i > 4)

and

q̃0 = −ω2 q̃1 = q̃2 = 0 q̃3 = 2Z q̃4 = 1
4 − n3

2 (q̃i = 0, i > 4).

Thus, for sufficiently small% (% � 1), relation (9) holds but (10), (11) are replaced by

γ =
∞∑
i=0

γi%
i γ0 = 1

2 + |n3| γ1 = − 2Z

1 + |n3| γ2 = − γ 2
1

2 + |n3|

γ3 = − 2γ1γ2

3 + |n3| γ4 = ω2 − ∑3
l=1 γlγ4−l

4 + |n3| γi = −
∑i−1

l=1 γlγi−l
i + |n3| .

(23)

For sufficiently large% (% � 1), the relation (12) remains unchanged with the exception of
some of the coefficients in (14) due tõqi = 0, i > 4. Otherwise, everything that was said
in this section holds in the casez = 0, as well. The basic ideas of this section rely upon
the approach summarized in Abramovet al (1980).

3. Computation of the matrix elements

In this section we show that the direct computation of integrals in (6) involving the
eigenfunctions and their derivatives may be avoided. Moreover, instead of numerically
unstable processes due to numerical derivation, we propose a method free of instability.
Also, analogously to the normalization process of the previous section, the computation of
the integrands, i.e. the eigenfunctions is not needed.

Let us introduce the notations�p = ∂8p/∂z andϒp(%, z) = ∂28p(%, z)/∂z
2. Due to

(7), �p(%, z) andϒp(%, z) satisfy the equations

�p
′′(%, z)+ [q(%, z)+ µp(z)]�p(%, z) = −τp(z)8p(%, z)− ∂q(%, z)

∂z
8p(%, z) (24)

ϒp
′′(%, z)+ [q(%, z)+ µp(z)]ϒp(%, z) = −2τp(z)�p(%, z)− 2

∂q(%, z)

∂z
�p(%, z)

−∂τp(z)
∂z

8p(%, z)− ∂2q(%, z)

∂z2
8p(%, z) (25)

whereτp(z) = ∂µp(z)/∂z.
Let us multiply both sides of equation (24) by8p and integrate over(0,∞). With

partial integration and by taking the orthonormalization (4), equation (7) and the behaviour
of the functions at the ends of the interval into account, we arrive at

τp(z) = −
∫ ∞

0
8p

2(%, z)
∂q(%, z)

∂z
d%. (26)

If (24) is multiplied by8q , with q 6= p, then, the same process yields∫ ∞

0
�p(%, z)8q(%, z)d% = 1

µq(z)− µp(z)

∫ ∞

0
8p(%, z)8q(%, z)

∂q(%, z)

∂z
d%. (27)
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Whenz 6= 0, with the notationsl1(%, z) = 1/(%2 + z2)3/2, l2(%, z) = 1/(%2 + z2)5/2,

I ipq(z) =
∫ ∞

0
8p(%, z)8q(%, z)li(%, z)d% i = 1, 2 (28)

Jpq(z) =
∫ ∞

0
�p(%, z)8q(%, z)l1(%, z)d% (29)

expressions (26) and (27) simplify to

τp(z) = 2ZzI 1
pp(z)

∫ ∞

0
�p(%, z)8q(%, z)d% = 2Zz

µp(z)− µq(z)
I 1
pq(z) p 6= q

(30)

while

τp(0) = 0
∫ ∞

0
8p(%, z)8q(%, z)

∂q(%, z)

∂z
d% = 0 (31)

hold trivially.
Applying the same arguments to equation (25) whenz 6= 0 after some calculations we

get∫ ∞

0
ϒp(%, z)8q(%, z)d% = 2Z

µp(z)− µq(z)

×
{
I 1
pq(z)+ 2zJpq(z)− z2

[
3I 2
pq(z)+ 4Z

µp − µq
I 1
pp(z)I

1
pq(z)

]}
q 6= p.

(32)

The identity ∫ ∞

0
ϒp(%, z)8p(%, z)d% = −

∫ ∞

0
�2
p(%, z)d% (33)

is due to orthonormalization.
First, let us consider integralsI ipq(z), i = 1, 2, p, q = 0, 1, . . ., z 6= 0. For their

evaluation we apply an idea similar to that used in (20) and described in Kitoroageet al
(1987). Let ∫ %

0
8p(ξ, z)8q(ξ, z)li(ξ, z)dξ = rpl(%, z)rq l(%, z)k

li
pq(%, z)∫ ∞

%

8p(ξ, z)8q(ξ, z)li(ξ, z)dξ = −rpr(%, z)rqr(%, z)k
ri
pq(%, z)

(34)

and forj = l, r get

kjipq
′(%) = [vjip (%)+ vjiq (%)]k

ji
pq(%)+ li sin2p(%) sin2q(%)

νp(%)νq(%)
. (35)

Approximating the initial values for these singular problems exactly as in section 2, in the
casez 6= 0 we arrive at

kli
pq(%0) = %0

3νp0νq0l
i
0

γ0
2(2γ0 + 1)

+ O(%0
4) wherel10 = 1

z3
, l20 = 1

z5
(36)

kr1
pq(%∞) = l̃10νp∞νq∞

2β0[(β0
2 + νp∞4)(β0

2 + νq∞4)]1/2
+ O

(
1

%∞

)
(37)

kr2
pq(%∞) = l̃20νp∞νq∞%∞2

2β0[(β0
2 + νp∞4)(β0

2 + νq∞4)]1/2
+ O(%∞) and l̃i0 = 1, i = 1, 2.
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One easily verifies thatI 2
pq(0) does not appear in the evaluation. In the computation of

I 1
pq(0), the only change is thatkl1pq(%0) = 1/[2γ0

2(γ0 − 1)] + O(%0).
Finally,

I ipqz = kli
pq(%c)− kri

pq(%c)

rpcrqc
(38)

for the relevant values ofz and i.
Jpq(z) and the expression on the right-hand side of (33) remain to be computed. For

this purpose, we use the assumption that the expansion

�p(%, z) =
∞∑
t=0

κpt (z)8t(%, z) with κpt (z) =
∫ ∞

0
�p(%, z)8t(%, z)d% (39)

holds and, together with it

Jpq(z) =
∞∑

t=0,t 6=p
κpt (z)I

1
tq (z) (40)

is valid (κpp(z) = 0 by orthonormalization). It immediately yields that

κpt (z) = 2Zz

µp − µt
I 1
pt whenp 6= t (41)

∫ ∞

0
�2
p(%, z)d% =

∞∑
t=0

κpt (z)

∫ ∞

0
�p(%, z)8t(%, z)d%

= 4Z2z2
∞∑

t=0,t 6=p

[
I 1
pt (z)

µp(z)− µt(z)

]2

(42)

Jpq(z) = 2Zz
∞∑

t=0,t 6=p

I 1
pt (z)I

1
tq (z)

µp(z)− µt(z)
. (43)

Before giving the final formulae for the matrix elements, notice thatI ipq = I iqp. Now, the
above considerations yield

Bnn(z) = 0 Bnn′(z) = 4Zz

µn′(z)− µn(z)
I 1
nn′(z) whenn 6= n′ (44)

Ann(z) = −4Z2z2
∞∑

t=0,t 6=n

[
I 1
nt (z)

µn(z)− µt(z)

]2

(45)

Ann′(z) = 2Z

µn′(z)− µn(z)

{
I 1
nn′(z)− z2

[
3I 2
nn′(z)

+4Z

(
I 1
nn′(z)I

1
n′n′(z)

µn′(z)− µn(z)
−

∞∑
t=0,t 6=n′

I 1
n′t (z)I

1
nt (z)

µn′(z)− µn(z)

)]}
. (46)

4. The coupled system

As it was said in section 1, instead of equation (5), we deal with a truncated one. Namely,
for fixedN , N = 1, 2, . . . , we investigate the eigenvalue problem

d2FN

dz2
+ B(z)dFN

dz
+ [A(z)− M(z)]FN = −2E∗NFN − ∞ < z < ∞ (47)
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where the vectorfunctionFN is assumed to be bounded. The vectorFN(z) is formed
as FN(z) = [f N0 (z), f

N
1 (z), . . . , f

N
N−1(z)]

T wheref Ni stands forfi in the N th truncated
system, T denotes the transpose of the vector, later that of a matrix. The entries of
the skew-symmetrical matrixB(z) are Bnn′(z), n, n′ = 0, . . . , N − 1, while the entries
of A(z) are Ann′(z), n, n′ = 0, . . . , N − 1. The matrix M(z) is diagonal,M(z) =
diag[µ0(z), . . . , µN−1(z)].

Due to (1) and (2), the eigenvectorsFN are either odd or even. Thus, whenn3 6= 0 we
may restrict the problem to the interval [0,∞) with imposing either the boundary condition
FN(0) = 0 for the odd solution orFN ′(0) = 0 for the even solution. (Within this section,
′ denotes derivation with respect toz.) Whenn3 = 0, the matrixA has a singularity at
z = 0, while the solution in question is required to be regular. This case must be handled
separately. The interval may be reduced again but to [z0,∞) with a small z0 > 0 and
again, the proper boundary condition atz0 must be imposed. The singularity of the system
at z = 0, however, is a weak one, i.e. in contrast to cases studied in section 2, any linear
condition atz = 0 remains admissible. Among them, those which produce odd and even
solutions are admitted. At a pointz0 sufficiently close toz = 0, they may be approximated
by FN(z0) = 0 or byFN ′(z0) = 0.

Now, we turn to reducing the problem to a finite interval. Whenz → ∞, A(z) andB(z)
tend to 0 as a negative power ofz, while M(z) = M∞ +O(1/z). The true eigenvaluesE∗

k ,
k = 0, 1, 2, . . . are known to be less than limz→∞µn(z)/2, n = 0, 1, . . . in non-autoionizing
states. Due to monotonicity ofµn(z) with respect ton for a fixed z and with respect to
z for fixed n, one hasE∗

k < limz→∞µ0(z)/2 for all k. We assume that the same holds
for the eigenvaluesE∗N

k of the truncated system, i.e. the diagonal matrixM∞ − 2E∗IN is
positive definite. (HereI is the identity matrix, the lower index refers to its order.) Then,
the boundedness of a solutionFN(z) when z → ∞ involves thatFN ′(z) = α(z)FN(z)

for sufficiently largez where limz→∞ α2(z) = M∞ − 2E∗I , α∞ = limz→∞ α(z) should be
chosen negative definite (see Birger and Lyalikova 1965). For the approximation of this,
we may use the boundary condition

FN ′(z∞) = α∞FN(z∞) (48)

provided thatz∞ is chosen to be sufficiently large. A more accurate boundary condition
FN ′(z∞) = α̂∞FN(z∞) may be obtained if a more accurate approximationα̂∞ is computed
using

α′ + α2 + Bα + A − M + 2E∗IN = 0 (49)

that defines functionα. Exactly as in section 2, the more coefficients of the power series
expansion ofA, B and M with respect to the non-positive powers ofz are involved, the
more coefficients in the power series expansion ofα(z) may be computed.

Next, let us rewrite the odd and even problems in the form of

G′ + P(z, E∗)G = 0 z1 6 z 6 z∞ (50)

U liT
1 G(z1) = 0 (51)

U rT
∞G(z∞) = 0 (52)

respectively, where

G =
(
FN

FN ′

)
P(z, E∗) =

(
0N −IN

A − M + 2E∗IN B
)

(53)
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z1 = z0 whenn3 = 0, otherwisez1 = 0, theN th order zero matrix is denoted by 0N and
i = e, o. The index e belongs to even solution(s), the index o refers to the odd one(s) and

U le
1 =

(
0N
IN

)
U lo

1 =
(
IN
0N

)
U r

∞ =
( −αT

∞
IN

)
. (54)

It is reasonable to normalize the right boundary condition too, and thusU rT
∞ = (−(αT

∞α∞ +
IN)

−1/2α∞|(αT
∞α∞ + IN)

−1/2).
The classical theory of adjoint systems claims that if a vector functionG(z,E) is a

solution of equation (50), thenUT(z, E)G(z,E) ≡ 0 whereU(z,E) = V (z,E)W(z,E),
V (z,E) is a solution of problemV ′ − P T(z, E)V = 0, while W(z,E) is arbitrary non-
singular. In 1961, Abramov introduced a special choice ofW providing the bestU in the
sense that the norm ofU remained constant on the whole interval. There was no need either
to compute the possibly unstableV or to find the properW separately; the equation forU
was derived directly.

The numerical problems of the type (50)–(52) are considered in a general setting in
Abramov et al (1980). A consequence of (50)–(52) is that a vector functionG(z,E) is a
solution if, for anyz ∈ [z1, z∞], it satisfies the linear algebraic system

U liT(z)G(z,E) = 0 U rT(z)G(z,E) = 0 (55)

where (2N ×N ) matrix functionsUp(z), p = li, i = o, e orp = r are the solutions of the
initial value problems

Up ′ − [I2N − Up(UpTUp)−1UpT]PTUp = 0 (56)

with initial values

U li (z1) = U li
1 U r(z∞) = U r

∞ (57)

respectively. In turn,G(z,E) is a non-trivial solution, i.e.E is an eigenvalue if

det

(
U liT(z)

U rT(z)

)
= 0. (58)

Whenz = zc is fixed, then, the latter relationship is a non-linear algebraic equation with
respect to the required eigenvalue. In order to findE∗N

k numerically, one has to solve a
pair of problems (56), (57) for each guessE. The stability of the computations is ensured
by the method of transfer (56) of the boundary condition, namely that

UpT(z)Up(z) ≡ constant (59)

holds. Due to normalization, the constant matrix on the right-hand side of (59) isIN in
each case.

WhenN = 1, the problem is a scalar, self-adjoint eigenvalue problem and one easily
gets a rough estimate from below:

µ0(0)/2< E∗1
0 (60)

and, obviously,E∗1
0 < E∗1

1 < E∗1
2 < . . . . In this case, equation (47) may undergo the

Prüfer transformation and the sequence of eigenvalues may also be computed by the method
described in section 2. Notice that the boundedness condition furnishing us with (48)
provides an upper bound limz→∞µ(z)/2 for all E∗N

k . The method of section 2 reflects
the number of zeros of the eigenfunctions when evaluating the eigenvalues, therefore the
sequenceE∗1

0 < E∗1
1 < E∗1

2 < . . . with known lower and upper bounds may be computed
without gaps.
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5. Appraisal of numerical results

To obtain the energy eigenvaluesEk, the algorithm described in the previous sections was
implemented by a FORTRAN program working on a SUN Sparc server 20. Some technical
details about this program can be found in the appendix.

The numerical solution of (7) provided functionsµ(z) at arbitrarily fixed values of the
parametersω, z and quantum numbersn andn3. Some of them are shown in figure 1. All
functions start atz = 0 from finite values and grow monotonically toµ∞

n =limz→∞µn(z).
This behaviour follows from formula (26) where the right-hand side is, obviously, non-
negative. Whenn3 = 0 the functionsµn(z) begin as a linear function of|z| while for n3 > 1
they behave as∝ z2. Beyond this qualitative picture, the figure compares (in below panels)
a few asymptotic analytical results (see Barcza 1996) to our results. The coincidence of the
two types of treatments is demonstrated in both asymptotic ranges. Looking for polynomial
radial eigenfunctions in a two-dimensional Schrödinger equation, Taut (1995) arrived at a
problem that coincides with (7) atz = 0 and obtained valuesµn(0) analitically for certain
pairs ofω andn. In these specific cases the results confirm each other. The eigenvalueµ

as a function ofω at different and fixed values ofz, 0 6 z � 1, z � 1 can be found in
Barcza (1996). Our evaluations confirmed the behaviour stated there, and therefore we do
not repeat these figures here.

Obviously, the evaluation of the coupling matrix elements plays an important role in
the solution of (47). For some parameter sets, the functionsAnn′(z) andBnn′(z) are shown
in figure 2. The matrix elementsAnn′ at n3 = 0 andn 6= n′ have logarithmic singularity at
z = 0. This feature is a consequence of the choice of the basis; no singularity arises in any
other combination of parameter values. Another remarkable property of the matrix elements
Ann′(z), the monotonicity on the wholez–interval (0,∞) seems to hold, independently of
the other parameters. The monotonicity appears forBnn′(z) as well. Whenn3 = 1, the
monotonicity disappears. With increasing|n − n′| the off-diagonal elements ofAnn′ , Bnn′

vanish more and more rapidly whenz is increasing. Together with the fast decrease ofAnn′ ,
Bnn′ for small and intermediate values ofz, this phenomenon demonstrates that the system
of equations (47) is coupled mostly by elements close to diagonal. This is a good omen
for the numerical solutions. We may expect a high accuracy inEk using a few channels,
only. Figure 3 shows the coupling matrix elements for somen, n′ and atn3 = 0, 1 near the
asymptotic ranges. Panels of the figures display the validity of the asymptotic expressions
by Barcza (1996) and the series expansion (39).

Some of the results are selected and demonstrated in tables 1 and 2, illustrating the
relevance of the basis and efficiency of the applied numerical method. We did not face
any difficulties in computations when increasing the magnetic numbern3. We also got
values not having been provided anywhere else, even in Ruderet al (1994). While Ruder
et al (1994) gives the results up to 6–8 digits at a very high number of channels (12, in
general), the coincidence in the first 3–5 digits (4–6 digits inE∗) appears even when we
use a very limited number of channels, 1, 2 or 3 and a very low accuracy at each step of the
computation. (We stopped the iteration at the final step when the relative accuracy achieved
10−6.) Thus, we verified this expectation of Liu and Starace (1987) for the first time both
for low and higher values ofn3 and for non-adiabatic approximation and by a different
numerical method. When the number of channelsN increases and the accuracy is kept
as before, our valuesEN0 seem to change in the next digits only, and the agreement with
results by Ruderet al (1994) is not getting worse. Since the bases are chosen differently
and therefore no common intermediate values exist for comparison. No exact final values
are available either, thus no general statement can be formulated in favour of any of the
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Figure 1. Eigenvaluesµn of the basis equation (7) as a function ofz for ω = 10−1, 1, 10,
n = 0, 1, 2, 3. Full curves: n = 0, chain curves:n = 1, dotted curves:n = 2 and long-
dash curves:n = 3. The short-dash–long-dash curves in the panels below are for showing the
asymptotic behaviour of the computed eigenvalues in comparison with the asymptotic expansions
in Barcza (1996). The right-hand side scale belongs ton3 = 1. µ∞

n = 2ω(2n+ n3 + 1).
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Figure 2. Coupling matrix elementsAnn′ , Bnn′ as a function ofz for n3 = 0, 1. The line types
indicate the first indices as in the figure 1. The assignments of labels are as(n, n′). The middle
panels are scaled logarithmically inz.

compared final values. As far as we know, no computations have been carried out yet with
the Liu–Starace basis using more than one channel, while we are able to do that. For the
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Figure 3. Asymptotic behaviour of the coupling matrix elementsAnn′ , Bnn′ versusz. The
labels refer to triple(n, n′, n3). The line types are the same as in figure 1,ω = 1. The left and
right axes belong to the parametern3 = 0, 1, respectively.

historical review of other approaches, their advantages and backdraws, we refer the reader
to the latest survey by Ruderet al (1994).



The diamagnetic Coulomb problem at high field strength 6761

Table 1. Energy eigenvaluesENk (in atomic units)a of the lowest statek = 0 of the H atom in
a magnetic field with strength parameterω whenπ = +1. The numbers in the brackets denote
the numberN of channels. The index R refers to the values taken from Ruderet al (1994).
The uncertainty in the last digits are indicated by/.

−n3 ω EN0,R EN0

1 0.7 0.178 993 (13) 0.178 57 (3)
0.178 69 (5)

1 0.400 387 (15) 0.400 59 (2)
0.400 55 (5)
0.400 587 (7)

10 8.5344/5 (12) 8.5329 (1)
8.534 40 (3)

15 13.2945/6 (12) 13.2930 (1)
13.2944 (2)

100 96.652 83/8 (12) 96.65278 (1)
2 1 0.528 828 (19) 0.528 67 (1)

0.528 76 (3)
10 8.806 36/7 (12) 8.806 17 (1)

8.806 30 (2)
100 97.197/8 (12) 97.19785 (1)

3 1 0.596 759 (21) 0.596 50 (1)
0.596 71 (2)

10 8.959 320/1 (12) 8.959 63 (1)
8.959 30 (2)

100 97.516 28/9 (12) 97.5164 (1)
4 1 0.640 649 (12) 0.640 51 (1)

0.640 63 (2)
10 9.061 413 (12) 9.061 39 (1)

9.061 44 (2)
100 97.733 63 (12) 97.7338 (1)

5 1 — 0.672 02 (1)
0.672 10 (2)

10 — 9.136 12 (1)
9.136 20 (2)

100 — 97.8958 (1)

a We recall thatω = 1 if |H| = 4.7 × 105 T.

It is worth putting an accent again on the gain in the computational efficiency. It
is achieved first because we do not evaluate the eigenfunctions of (3), instead of that, we
directly obtain the coefficients of (5), i.e. the functionsµ(z), Ann′(z) andBnn′(z). Neither are
the vector-functionsFN(z) belonging to the iteration steps computed when the eigenvalues
ENk are defined by iteration as described in the previous sections. Secondly, all intermediate
evaluations in the definition of the eigenvaluesENk consist of the solution of initial value
problems which are stable and have smooth solutions. This allows us to use both simple
methods for the numerical integration of these equations and large integration steps.

6. Conclusions

The numerical investigations of the Liu–Starace basis were presented in this work. We
determined the eigenvaluesµn(z) of the basis equation (7) on the wholez-interval [0,∞)

without computing eigenfunctions by solving a first order differential equation only. This is
a profound simplification compared to the generally accepted view when treating equations
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Table 2. Energy eigenvaluesENk (in atomic units) of the lowest statek = 0 of H atom in
magnetic field with strength parameterω when π = −1. Designations are the same as in
table 1.

−n3 ω EN0,R EN0

1 1 0.754 75 (12) 0.754 759 (1)
10 9.623 880 (12) 9.623 80 (1)

100 99.538 178 (12) 99.5388 (1)
2 1 0.782 545 (12) 0.782 545 7 (1)

10 9.647 807 (12) 9.647 81 (1)
100 99.549 420 (11) 99.5495 (1)

3 1 0.800 862 (12) 0.801 86 (1)
10 9.665 419 (12) 9.665 42 (1)

100 99.558 673 (9) 99.5589 (1)
4 1 — 0.814 45 (1)

10 — 9.679 39 (1)
100 — 99.5669 (1)

similar to (7). The usual procedure is to solve a second order differential equation which
leads simultaneously to the eigenvalue and eigenfunction. In this manner we saved much
computing time. We showed that the numerical treatment is in keeping with the asymptotic
one in both relevant domains. We reduced the computation of coupling matrix elements
Ann′(z), Bnn′(z) to determining the values of some quadratic functionals. Each functional
was computed in an efficient and stable way by solving ordinary differential equations. The
results of the numerical computations and the asymptotic expansions fit well where the latter
is valid. It is not true only in the case ofAnn′(z) if n3 = 0, n 6= n′ and z → 0. Here
the series expansion (39) converges slowly. Lastly, we completed our report by showing
a method for obtaining the eigenvalues of coupling equations (47) analogous to that used
for the basis equation (7). Both methods are based upon the same factorization where
the functions satisfy relationsUTU ′ = 0, UTU = I at each point. It corresponds to a
continuous orthogonalization. We note that, based on the theoretical results in Konyukhova
and Pak (1987), the above method may also be modified for being suitable for computations
at large values ofω. The problem is, however, beyond the scope of this paper.

The Liu–Starace basis that was chosen naturally allows us to compute the energy levels
of a hydrogen-like ion in a strong magnetic field more efficiently than it was done by bases
of other types. Accordingly, we can evaluate higher excited states than were available
before. Moreover, we might get a chance to map some resonances in the continuum.

Our main purpose with the present work was the exact mathematical establishment of
the numerical solution of the problem as it was posed in the introduction. We remark that,
for small ω, the oblate spheroidal system of coordinates with a similar expansion of the
eigenfunction is more relevant (see Barcza 1994), while for larger values ofω, this setting
fits well. For evaluating the energy levels of hydrogen atom in strong magnetic fields,
we gave an almost complete set of mathematical tools and with its help, we carried out a
number of computations.
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Appendix

To solve equations (56) a hierarchically organized FORTRAN program was developed.
At the lowest level of the program, the fourth order Runge–Kutta (R–K) algorithm with
an adaptive stepsize control due to Presset al (1992) is plugged in. It integrates (16)
twice in each step with initial conditions (18) and (19), respectively. The value%0 was
chosen equal toz × 10−4. For approximation ofγ (%0), a truncated sum of (10) was
taken. Due to the fast convergence the accuracy became suitable when the consequent
sums differed less than by 10−3. The value%∞ cannot be fixed similarly since (13) is an
asymptotic expression only. A numerical procedure was used for simultaneous choise of
%∞ and truncation. For both cases, exact error estimates are available, see Abramov and
Balla (1993) and Balla (1977). The intermediate point%c was set equal toz except in
the casez = 0 where%c = 1 was taken. The routine on the next level determinedµn
by a simple bisection method as indicated in section 2. It was stopped when either the
relative accuracy reached that of the machine one inµn i.e. |(µ(i−2)

n −µ(i−1)
n )/µ(i)n | 6 10−15

or the relative error|[2l(%c) − 2r(%c)]/2l(%c)| became less than 10−12. The upper
indices in the previous formula denote the number of iterations. The coupling matrix
elements were computed as has been described in section 3 by simultaneous integration of
equations (16), (21) and (35). Again, the above R–K algorithm was used for numerical
integration.

When computingENk for a fixed k and N , both the value of the determinant and
the relative deviation ofENk in the consequent iterations were checked. For evaluation
of the components building up the determinant we integrated equation (56). The basic
integration routine was as above. To approximate the identity (59), we checked its defect
at M equidistant pointszi = z0 + (z∞ − z0)i/M whereM = 8 was chosen. Aiming at a
global errorε, on each subinterval [zi, zi+1] the local errorεloc = ε/M was allowed and
inequality ∑

i,j

(UTU − I )2i,j < εloc (A1)

was controlled. On the subintervals the starting stepsize was chosen to bes = (zi+1−zi)/M0.
M0 = 8 was set on the first subinterval. If the condition did not hold, then the algorithm
returned to the left end of the subinterval andM0 was doubled. Otherwise, either the
stepsize was kept for the next subinterval or it was doubled, provided it had been accepted
at least once before. This stepper method allowed us to compute all necessary quantities
(µn,Ann′ , Bnn′ ) at a fixedz no more than once and to store them in a linked list structure.

During the integration of coupled equations (56), the inverse of the matricesUTU

was needed at eachz. Since these matrices are symmetrical and close to the identity
matrix, the most efficient method, that is, the Cholesky decomposition (see e.g. Presset
al 1992) was used. For finding the determinant in (58), an LU decomposition was used.
As we said before the relative accuracy of the eigenvalue was one of the checkpoints.
If |(E(i−1)

k − E
(i)
k )/E

(i)
k | 6 10−6, the process was stopped andE(i)k was accepted as

a starting value for the computation at a larger numberN of channels or for a more
excited level in the spectrum. It is remarkable that these two types of iterations are
practically independent, so the processes could have been parallelized. Whenn3 6= 0,
we always choosez0 = 0, otherwisez0 = 10−3. The largest right end wasz∞ = 10
while the intermediate pointzc was always close toz0 and depended on the length of the
z-interval.
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